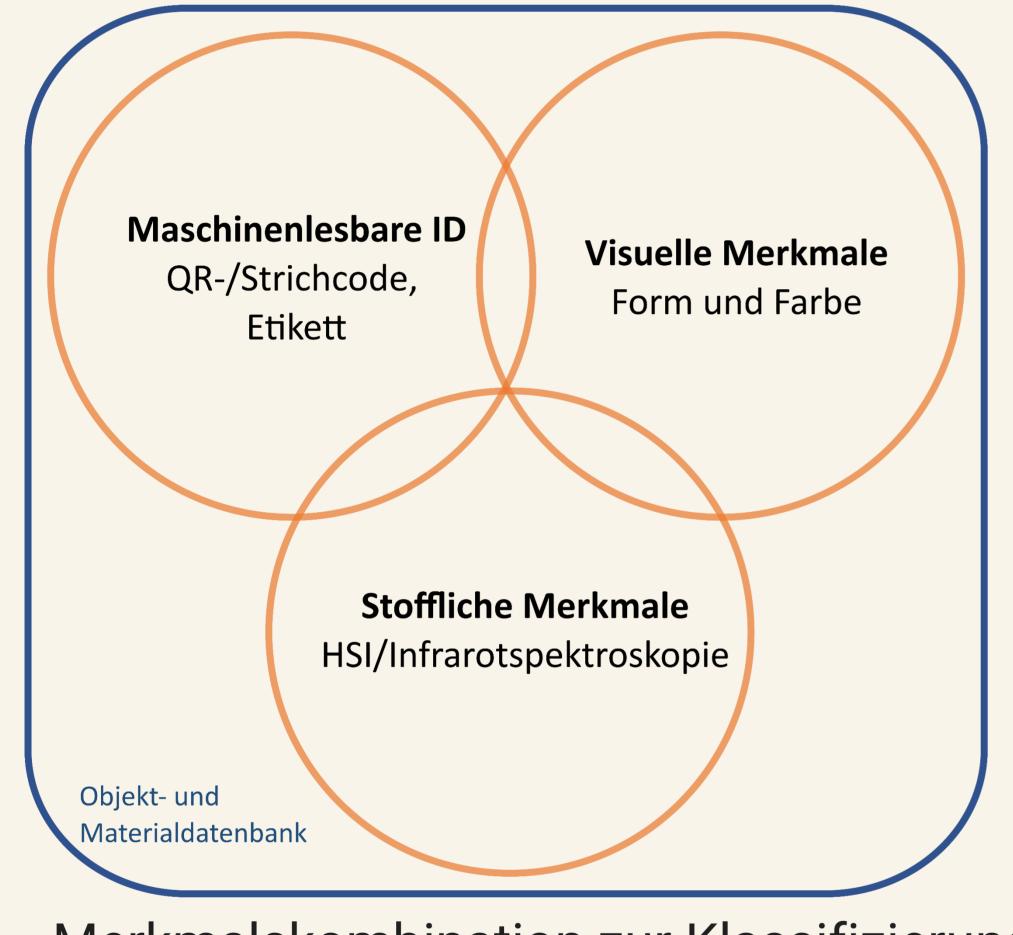


Forschungsvorhaben "RoSA-ReCycle"

H. Neumann^{a)}, M. Krech^{b)}, D. Fiß^{a)}, A. Kupka^{b)}, C. Vogel^{a)}, J. Friedrich^{b)}


a) Institut für Prozesstechnik, Prozessautomatisierung und Messtechnik (**IPM**) b) Zittauer Institut für Verfahrensentwicklung, Kreislaufwirtschaft, Oberflächentechnik, Naturstoffforschung (**ZIRKON**)

Herausforderung – Recycling medizinischer Abfälle

- Große Mengen an Einwegprodukten aus Kunststoffen, Metallen und Verbundmaterialien fallen täglich an.
- Unterschiedliche Materialmixe und Verunreinigungen erschweren eine sortenreine Wiederverwertung.
- Bestehende Technologien erkennen komplexe Strukturen oft nicht zuverlässig viele Wertstoffe gehen verloren.
- Das Potenzial der Kreislaufwirtschaft im Gesundheitssektor bleibt bislang ungenutzt.

Medizinische Abfälle: vielfältige Materialien und Strukturen.

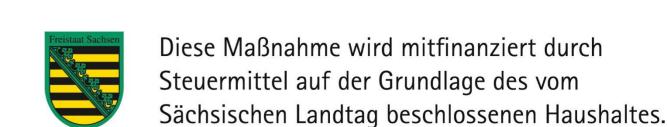
Merkmalskombination zur Klassifizierung

Innovation für die Erkennung und Sortierung

- Kombination moderner Sensortechnologien: Spektroskopie, Bildverarbeitung und Machine Learning.
- Echtzeit-Auswertung von Sensordaten für präzise
 Materialerkennung und automatische Trennentscheidungen.
- Flexible Algorithmen passen sich unterschiedlichen Abfallströmen an.
- Ziel: Höhere Recyclingquoten und bessere Ressourcennutzung im Gesundheitswesen

Neue Wege für nachhaltiges Recycling

- Signifikante Erhöhung der Wiederverwertung medizinischer Abfälle.
- Reduzierung von CO₂-Emissionen und Ressourceneinsparungen durch verbesserte Kreislaufwirtschaft.
- Kliniken und Labore profitieren von effizienteren Entsorgungsprozessen.
- Die entwickelte Technologie ist übertragbar auf weitere Branchen mit komplexen Materialgemischen.


Praktische Umsetzung erfolgt an der Versuchsanlage Cobot²

IPM
V.-Prof. Dipl.-Ing. (FH) Daniel Fiß
+49(0) 3583 612-4749
d.fiss@hszg.de

ZIRKON
Prof. Dr.-Ing. Jens Friedrich
+49(0) 3583 612-4885
jens.friedrich@hszg.de

